The Effect of Milling Time on the Microstructural Characteristics and Strengthening Mechanisms of NiMo-SiC Alloys Prepared via Powder Metallurgy
نویسندگان
چکیده
A new generation of alloys, which rely on a combination of various strengthening mechanisms, has been developed for application in molten salt nuclear reactors. In the current study, a battery of dispersion and precipitation-strengthened (DPS) NiMo-based alloys containing varying amounts of SiC (0.5-2.5 wt %) were prepared from Ni-Mo-SiC powder mixture via a mechanical alloying (MA) route followed by spark plasma sintering (SPS) and rapid cooling. Neutron Powder Diffraction (NPD), Electron Back Scattering Diffraction (EBSD), and Transmission Electron Microscopy (TEM) were employed in the characterization of the microstructural properties of these in-house prepared NiMo-SiC DPS alloys. The study showed that uniformly-dispersed SiC particles provide dispersion strengthening, the precipitation of nano-scale Ni₃Si particles provides precipitation strengthening, and the solid-solution of Mo in the Ni matrix provides solid-solution strengthening. It was further shown that the milling time has significant effects on the microstructural characteristics of these alloys. Increased milling time seems to limit the grain growth of the NiMo matrix by producing well-dispersed Mo₂C particles during sintering. The amount of grain boundaries greatly increases the Hall-Petch strengthening, resulting in significantly higher strength in the case of 48-h-milled NiMo-SiC DPS alloys compared with the 8-h-milled alloys. However, it was also shown that the total elongation is considerably reduced in the 48-h-milled NiMo-SiC DPS alloy due to high porosity. The porosity is a result of cold welding of the powder mixture during the extended milling process.
منابع مشابه
Effect of Silicon Carbide and graphite additives on the pressureless Sintering mechanism and microstructural characteristics of Ultra-High Temperature ZrB2 Ceramics Composites
The effect of SiC content, additives, and process parameters on densification and microstructural properties of pressureless sintered ZrB2– (1–10 wt %) SiC particulate composites have been studied. The ZrB2–SiC composite powders mixed by Spex mixer with 1-2wt% C (added as graphite powder) and CMC have been cold-compacted and sintered in argon environment in the temperature range of 1800–2100ºC ...
متن کاملEFFECT OF COMPOSITION AND MILLING TIME ON THE SYNTHESIS OF NANOSTRUCTURED Ni-Cu ALLOYS BY MECHANICAL ALLOYING METHOD
Ni and Cu elemental powder mixtures containing 25, 50, and 75% at Cu were subjected to mechanical alloying in a planetary ball mill under various milling times. Structural evolution was analyzed by means of X-ray diffraction and scanning electron microscopy. Experimental results indicated that nanostructured solid solution alloy powders having homogeneous distribution of Ni and Cu were formed b...
متن کاملRole of Intensive Milling on Microstructural and Physical Properties of Cu80Fe20/10CNT Nano-Composite
Carbon nano-tube (CNT) reinforced metal matrix nano-composites have attracted a great deal of attention in recent years due to the outstanding physical and mechanical properties of CNTs. However, utilizing CNT as reinforcement for alloy matrixes has not been studies systematically and is still a challenging issue. In the present study, Cu80Fe20/10CNT nanocomposite was synthesized by mechanical ...
متن کاملThe Effect of Binder Components and Powder to Binder Ratio on Rheological Properties of Mg-SiC Feedstocks
Rheological characteristics of powder injection molding PIM feedstocks play an important role in final properties of manufactured MMCs. In this study, six formulations composed of magnesium and SiC powder (99:1 wt.%) and a specific binder were prepared to investigate the influence of binder composition, powder to binder ratio, time and temperature on rheological properties of the feedstock. Th...
متن کاملFabrication of TiC particulate reinforced Ni-50Fe super alloy matrix composite powder by mechanical alloying
Mechanical alloying is a powder metallurgy processing technique involving cold welding, fracturing, and rewelding of powder particles in a high-energy ball mill. In this work, NiFe-TiC composite powders were prepared by mechanical alloying process using planetary high-energy ball mill. The effect of TiC addition by weight percent on the NiFe solid solution formation, grain size, lattice paramet...
متن کامل